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The Magnetospheric Multiscale Mission (MMS) is a NASA mission intended 
to make fundamental advancements in our understanding of the Earth’s 
magnetosphere. There are three processes that MMS is intended to study 
including magnetic reconnection, charged particle acceleration, and turbu- 
lence. There are four phases of the MMS mission and each phase is designed 
to study a particular region of the Earth’s magnetosphere. The mission is 
composed of a formation of four spacecraft that are nominally in a regular 
tetrahedron formation. In this work, we present optimal orbit designs for 
Phase I and 11. This entails designing reference orbits such that the space- 
craft dwell-time in the region of interest is a maximum. This is non-trivial 
because the Earth’s magnetosphere is dynamic and its shape and position 
are not constant in inertial space. Optimal orbit design for MMS also entails 
designing the formation so that the relative motion of the four spacecraft 
yields the greatest science return. We develop performance metria that are 
directly related to the science return, and use Sequential Quadratic Pro- 
gramming (SQF j to determine optimal relative motion solutions. While 
designing for optimal science return, we also consider practical constraints 
such as maximum eclipse time and minimum inter-spacecraft separation 
distances. Data are presented that illustrates how long we can ensure that 
the formation remains in the relevant region of the Earth’s magnetosphere. 
We also draw general conclusions about where in the orbit acceptable tetra- 
hedron configurations can be provided and for how long. 

INTRODUCTION 

The MMS mission is one of several missions in NASA’s Solar Terrestrial Probes (STP) program. 
The goal of MMS is to  make fundamental advancements in OUT understanding of the Earth’s mag- 
netosphere and its dynamic interaction with the solar wind. Much of the previous research has been 
limited due to the reliance on single-spacecraft measurements which are not adequate to reveal the 
underlying physics of highly dynamic, hghly structured plasma processes. By taking advantage of 
the latest multi-spacecraft mission technology, MMS will be able to differentiate between spatial 
and temporal effects to determine the three-dimensional geometry of the plasma, field, and current 
structures under study.’ 

MMS is not the first mission to use multiple spacecraft to study magnetospheric dynamics. The 
Cluster I1 mission was successfully launched by the European Space Agency (ESA) in the summer 
of 2000 and has already provided fascinating results on magnetospheric dynamics. The primary 
difference between MMS and Cluster I1 is the relative distances of the spacecraft in formation. The 
relative distances of the MMS spacecraft are expected to be several orders of magnitude smaller 
than the distances of the Cluster I1 spacecraft. A detailed comparison of MMS and Cluster II is 
beyond the scope of this paper. However, due to the large difference in formation dimensions, the 
science return for MMS and Cluster I1 are likely to complement each other well. 
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There have been many important contributions to the literature for orbit design for magneto- 
spheric missions. Stern6> ’ presented a systematic approach for designing orbits for magnetospheric 
missions. In Ref. [ 61, Stern assumed an equatorial mission orbit to maximize mass to orbit. How- 
ever, for the work presented here we will not limit the design to equatorial orbits. In Ref. [ 71, 
Stern builds upon his previous results and presents a mission known as Profile. In Profile a “String 
of Pearls” orientation of multiple spacecraft are used to investigate magnetospheric processes near 
the Earth’s equator. Hughes2 developed an approach to provide optimal tetrahedron geometries for 
Phase I of MMS, and quantified the achievable performance with natural Keplerian motion. 

To provide the best possible orbit design for the MMS mission, we must take the science objectives 
described above, and develop a numerical relationship between the orbit evolution and the science 
data return. We need to ensure the formation of spacecraft passes through the desired region of 
the magnetosphere, taking into account the non-linear evolution of the orbits due to perturbations, 
and the non-linear dynamics of the magnetosphere itself. We also need to ensure that the relative 
motion of the spacecraft in formation provides optimal science return. 

According to the latest documentation,’ the region of the magnetosphere of primary interest is 
the plasma sheet region. We discuss this region and its dynamics in more detail in a later section. 
However, with the region of interest of the magnetosphere well-defined, we can define one goal for 
the orbit design: We wish to maximize the total time the formation spends in the plasma sheet 
region of the magnetosphere. This problem is complicated by practical constraints such as maximum 
eclipse time which will be discussed in a later section. 

We know the optimal relative geometry of the four spacecraft is a regular tetrahedron. However, 
it is not possible to provide a regular tetrahedron for an entire orbit using only Keplerian motion. 
Furthermore, due to fuel constraints and operational limitations of spinning spacecraft, continuous 
feedback control of the formation to maintain a regular tetrahedron is probably not feasible. Hence 
in this work, we investigate the tetrahedron quality that can be provided by four spacecraft using 
Keplerian motion only. The tetrahedron quality is a function that depends on the size of the 
tetrahedron and its shape. Hence we can state a second goal: We wish to maximize the tetrahedron 
quality when the formation is in scientifically interesting regions of the magnetosphere. 

As stated above, we assume that the science return is dependent on both the reference orbit 
design, and the relative motion of the spacecraft in formation. However, due to the nature of the 
science, and the fact that the relative separations of the spacecraft are small in relation to the 
orbit dimensions, we assume that we can solve for the reference orbit and relative motion solutions 
independently, without loss of generality. This allows for some significant simplification of the 
problem. However there are still considerable difficulties to address. In the next section we present 
in detail the methods used to determine optimal reference orbits and relative motion solutions. 

ORBIT DESIGN 

Designing optimal spacecraft orbits for MMS necessitates that we find orbits that spend the max- 
imum amount of time in the magnetosphere while simultaneously providing a maximum tetrahedron 
quality factor during regions of interest. We assume that providing such a set of orbits maximizes 
science return. Due primarily to the fact that the tetrahedron dimensions are several orders of 
magnitude less than the dimensions of the reference orbit, we assume we can decouple the relative 
motion fiom the reference motion and solve for the optimal solutions for these problems separately. 

While providing optimal reference orbits and relative motion configurations we must simultane- 
ously consider many mission constraints. The mission constraints are determined by both the science 
objectives and practical limitations determined by the spacecraft design. Some of the constraints 
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need to be taken into account when designing the reference orbit, while others only affect the tetra- 
hedron design. For example, the maximum allowable eclipse duration is taken into account in the 
reference orbit design. The minimum inter-spacecraft separation distance is taken into account in 
the relative motion design. In some cases it is easier to use a penalty function approach to ensure 
a constraint is satisfied. In other cases it is more effective to express a constraint as either a linear, 
bound, or non-linear constraint and let an SQP algorithm ensure the constraint is satisfied. The 
handling of the mission constraints is discussed in detail in their appropriate sections. 

While determining the mission orbits is the topic of this research, a nominal orbit configuration 
for Phase I and I1 is suggested and is shown here in Table 1. In the next subsection we use the 

Table 1: Properties of MMS Orbits Phase I and 11 
Property Phase I Phase I1 

TP 1.2 R, 1.2 Re 
Ta 12.0 Re 30.0 Re 
T 0.995 days 3.615 days 
a 42096 km 99499 lcm 
e 0.8182 0.9230 
i 10.0" 10.0" 

W 90.0" 90.0" 
R 0.0" 0.0" 

Tetr&:ekon Skze 10 krn, i000 icm i u  km, 1000 km 

nominal orbits as a reference solution and investigate how well similar orbits provide coniigurations 
for maximal science return for MMS. After investigating the reference orbit, we present a method 
for designing optimal tetrahedron formations. 

Reference Orbit Design 

Our primary goals in designing a reference orbit for MMS axe to maximize the science return and 
to satisfy mission constraints. We assume that we can maximize science performance by maximizing 
the time the reference orbit spends in the plasma sheet region of the Earth's magnetosphere. Hence 
our performance metric for the reference orbit design can be written as 

where At, is the dwell time of the i th passage of the reference spacecraft through the plasma sheet 
region. By summing over i we obtain the total time the reference spacecraft spends in the plasma 
sheet region. 

To evaluate &. (1) we need a model of the plasma sheet region and its dynamic motion in time. 
A diagram that illustrates the different regions of the magnetosphere, including the plasma sheet 
region, is found in Figure 1. The magnetosphere moves nonlinearly with respect to inertial space. 
One cause of this motion is that the Earth's magnetic dipole is not in line with the Earth's spin 
axis. This causes the magnetosphere to rock in inertial space with a period of one day. Another 
cause for the nonlinear motion of the Earth's magnetosphere is that the orientation of the Earth's 
magnetic pole with respect to the incoming solar wind changes over the course of the year. During 
the summer season in the northern hemisphere, the dipole is tilted toward the sun. During the 
winter season in the northern hemisphere, the dipole is tilted away from the sun. A final cause for 
the motion of the magnetosphere is the dynamic nature of the incoming solar wind. For this work 
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Figure 1: The Earth’s Magnetosphere 

we use a model of the Magnetosphere developed by Tsyganenko8-12 and we refer the reader to the 
references for further details on the mode!. 

For the reference orbit optimization the problem is greatly simplified if we choose to parameterize 
the problem using Keplerian orbital elements. The orbit dimensions, rp and ra, for Phase I and I1 
are given in Table 1. These dimensions ensure the orbit does not extend too fax from the Earth 
such that orbit apogee is beyond the interesting region of the plasma sheet. Given rp and r,, we can 
determine the semimajor axis and eccentricity of the reference orbits for Phase I and 11. However, 
the inclination, i, the argument of periapsis, w, the right ascension of the ascending node, R, and 
the true anomaly at the initial epoch vi, are still undefined. Hence we can write 

Jrej = f(i, W, 0, vi) (2) 

In reality, J,.,f is an explicit function of the initial epoch because the perturbations of the Sun and 
Moon are explicit functions of time . However, the current launch date for MMS is early 2010 and 
we have assumed an initial epoch of March 22, 2010 at 12:00:00:0000 UTC. 

There are several important constraints to consider in the reference orbit design. We consider 
constraints on the maximum eclipse duration and the minimum allowable periapsis. The maximum 
allowable eclipse duration is determined by the spacecraft power system capabilities. The minimum 
allowable periapsis is determined primarily by reentry concerns, but also is dependent on the science 
goals. We have chosen to perform parametric scans over a range of the independent variables 
to establish the relationship between the independent variables and the cost and constraints. The 
motivation for doing so is to provide data which can allow us to draw some general conclusions about 
the design space and its properties. We desire to find solutions that maximize the dwell time in the 
Plasma Sheet. However, we also need to ensure we do not violate the maximum eclipse constraint 
or the minimum periapsis constraint. Due to the fact that these constraints have not been well 
defined at this time, we cannot solve for individual solutions to the optimal reference orbit problem. 
However, having a good understanding of the relationship between the independent variables and 
the cost and constraints is invaluable. We can provide this understanding by performing appropriate 
parametric scans and presenting the data in a useful way. 
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To perform parametric scans we have chosen to vary the independent variables in increments of 
2", with upper and lower bounds defined by 

10°C i < 28" 
80" < w < 100" 

-10" < Q < 10" 

The initial true anomaly, vi, is held constant at zero for reasons explained in a later section. For each 
set of initial conditions we propagate the reference orbit for 6 months. For the 6 month propagation 
we determine the dwell time in the plasma sheet, the maximum eclipse duration, and the minimum 
radius of periapsis for each solution. The force model is a 4x4 non-spherical gravity field (JGM- 
2), with perturbations fiom the Sun and Moon (DE200). The performance and constraint data is 
included in a later section. 

In summary,  for the reference orbit design, we wish to maximize the dwell time of the formation 
of spacecraft in the plasma sheet region of the magnetosphere. We assume that the formation 
dimensions are small enough that we can solve the reference orbit optimization problem by only 
considering the dwell time of the reference spacecraft. We perform a set of parametric scans in 
order to determine the relationship between the independent variables and the dwell time of the 
reference spacecraft. The relationship between the independent variables and the constraints are 
also presented. The results for the reference orbit design are presented in R !atrtr sectim. B&ie 
&sixssiiig ihe resuits we present the design approach for finding optimal relative motion solutions. 

Relative Motion Design 

The science return from the four MMS spacecraft is intimately dependent on the relative motion 
of the spacecraft in formation. To maximize science return it is desirable for the spacecraft to 
maintain a regular tetrahedron over the entire orbit. However this is not possible using Keplerian 
orbits and using active control to maintain a regular tetrahedron is prohibitively costly. Hence we 
wish to find the relative motion that provides the maximum performance possible with Keplerian 
orbit dynamics. Our goal is to characterize the performance that we can provide by carefully 
optimizing the relative motion of the four spacecraft. In general the performance will vary in time 
and it is important to determine for which regions of the reference orbit we can provide acceptable 
science return. In this subsection we present an approach to determine optimal relative motion 
solutions. The method was developed previously by Hughes,' and we refer the reader to the reference 
for a more detailed discussion. 

We begin by developing a metric that allows us to ascertain the science return provided by a 
particular relative geometry at a given instant. Then, given the instantaneous performance metric, 
we develop another metric that allows us to determine the performance of a particular orbit design 
over a specific region of interest in the orbit. There are many different possible formulations for an 
instantaneous tetrahedron quality metric, and we have chosen one based on work by Gla~meier .~  
Glassmeier's metric is written as 

QGM = 7 + - + 1 (7) 
va s a  

v s* 
where V, is the actual volume of a given tetrahedron, S, is the actual surface area of a given 
tetrahedron, V* is the volume of a regular tetrahedron with sides equal to the average side length of 
the actual tetrahedron, and S* is the area of a regular tetrahedron with sides equal to the average 
side length of the actual tetrahedron. It is important to note that the following two relations are 
always true: 

v, 5 v* (8) 
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' sa 5 s* (9) 
Hence, the meximum value of QGM is three and this occurs when the formation is in a regular 
tetrahedron configuration. The value of QGM is one when the formation is collinear, or collocated. 
Glassmeier's quality metric provides a way of determining the regularity of a tetrahedron. However, 
it is important to note that it does not give any information about the size of the tetrahedron. All 
regular tetrahedrons, regardless of the side length L, have the property QGM = 3. This is a concern 
because the size of the tetrahedron formation is important for MMS. 

We propose a modification to Glassmeier's metric to allow it to contain information on not only 
the tetrahedron shape, but also its size. There are many ways in which we can modify QGM to 
include information on the tetrahedron's size. Before we m o d e  QGM, we define a simple function 
S(L*) as follows: 

0 L* < e l  
(L* - &)2(L* + e1 - 2C2)2/(e, - L*)4 

0 L* > e4 

e1 < L* < e, 
e, < L* < e3 (10) 

(L* - &)'(L* - 2e3 f l4)'/(!4 - !3)4 < L* < e4 

where L* is the average side length, and C1, e2, C3, and e4 are chosen according to the desired 
dimensions of the tetrahedron. In Table 2, the values of C1, e,, e3, and e4 used in this work for the 
10 km and 1000 km tetrahedron are shown. A graph of S(L*) for the 10 km tetrahedron is s h m  in 
Figure (2) and p r ~ v i d e s  zz inttiitiiie description of the function. For the 10 km tetrahedron we have 
designed S(L*) to be zero when the average side length is not near 10 km. The limits are chosen so 
that S(L*) is zero for tetrahedrons with average side lengths of less than 2 km, or greater than 20 
km. 

Table 2: Values of .!i for 10 km and 1000 km tetrahedrons 
Tetrahedron Dimension e, e2 e3 C4 

10 km 2 4 18 20 
1000 km 700 800 1200 1300 

1 I I I I I I I I I 

. . . . . .  .:_ . . . . . : . . . .  . . . ;  . . . . . .  i . . . . . .  : . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.................................................. 

. . . . . .  .;. . . . . .  .;. . . . . .  .:. . . . . .  i . . . . . .  ( .  . . . . . . . . . . . . . .  

I I I I I I 

0 2 4 6 8 10 12 14 16 18 20 22 
Average Leg Length a*), km 

Figure 2: Plot of S(L*) 

By posing a composite quality metric Qc defined as 
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we have a metric that contains information on both the size and shape of the tetrahedron. When 
the value of &c is three, we know that the formation is in a regular tetrahedron configuration, and 
that the side length is somewhere between 4 and 18 km. 

Given an instantaneous measure of performance, we need to formulate a general expression to 
provide a measure of performance over a region of interest along the reference orbit. After considering 
several forms we have chosen a form shown in Eq. 12 

where vi is the initial true anomaly defining the beginning of the region of interest, and vj is the 
hal true anomaly and defines the end of the region of interest. This metric is proportional to the 
area between the ideal performance and actual performance curves, because according to Eq. (11) 
the ideal instantaneous performance is always three. When the integral in Eq. (12) is zero, the 
performance is ideal over the entire region of interest. The choice of independent variables, X, is 
important in the success of an optimization process and can affect the find solution and the time to 
converge for an iterative method. There are many possibilities for choosing independent variables 
for performance metric shown in Ekq. (12). However, if we choose to work in Keplerian elements, the 
problem is greatly simplified. 

While solving for optimal relative motion solutions we assume Keplerian motion, so the orbit 
dynamics are not explicit functions of time. Therefore, there are six state variables associated mIth 
the c h i t  stlt-e cf c ixh  cif the four spacecraft. Hence, there is a maximum of 24 independent variables 
for describing the motion. However, we require that the periods of all the orbits must be equal. This 
is equivalent to the following three constraints 

a1 = a2 

a2 = a3 

a3 = a4 

where a1 is the semimajor axis of orbit one and so on. If we choose to work in Keplerian elements 
these constraints can be satisfied implicitly. The vector of independent variables chosen for this 
work is 

X = [a el il w1 R1 v1 e2 i2 w2 R2 vz e3 i 3  w3 R3 v3 e4 a4 w4 0 4  v4IT (13) 
where a is the semimajor axis of all orbits, e is the eccentricity, i is the inclination, w is the argument 
of periapsis, 52 is the right ascension of the ascending node, v is the true anomaly, and the subscripts 
represent the spacecraft number. 

Recall that for Phase I the nominal orbit dimensions are 1.2 x 12 Re, and for Phase I1 the nominal 
dimensions are 1.2 x 30 Re. We must impose additional constraints on X to ensure that the orbit 
solutions have dimensions similar to the nominal orbit dimensions. In this work we have not tried 
to meet these constraints exactly. Rather, we wish to characterize the performance possible using 
orbits with dimensions near nominal orbit dimensions. There are several motivating factors for this 
work. First, the solutions are computationally demanding and relaxing some constraints is helpful 
to find solutions efficiently. Secondly, the allowable tolerances on the orbit dimensions have not been 
specified by the MMS Project. The bound constraints on the orbital elements are shown in Table 3. 

There are numerous choices for numerical optimization routines that are applicable for this work. 
Because we have bound constraints on the independent variables, we must choose a method that 
can handle linear constraints. For this work we have chosen to use SQP. The specific package we 
have chosen to use is MATLAB’s fmincon function. For details on the fmincon routine, we refer the 
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Table 3: Bound Constraints Used in Relative Motion Optimization 
Property Phase I, 10 km Phase I, 1000 km Phase 11, 10 km 

a 
e 

41905 km < a < 43905 Icm 
0.80 < e < 0.80 

41905 km < a < 43905 km 
0.80 < e < 0.80 

97745 km < a < 101253 km 
0.92125 < e < 0.92495 

i 9.5" < i < 10.5' --oo<i<co -oo<i<00 
w 85.293" < e < 95.293' - - o o < w < 0 0  - o o < w < 0 0  
Q - - o o < R < o o  -00<0<00 - o o < n < w  
V i  -00 < Vi< 00 --oo < Vi < 00 -oo < Vi < 00 

reader to the documentation for MATLAB's Optimization There are no known analytic 
formulations for the gradient of the performance metric described in Eq. (12) with respect to the 
independent variables described in Eq. (13). Hence, for this work all of the derivatives are calculated 
using finite differencing. The algorithm used to develop an initial guess for the independent variables 
is presented in RefI21. 

To pose an optimization problem we must formulate a performance metric and choose a set of 
independent variables. If using an iterative approach we must also provide an initial guess. In 
this section we developed a performance metric that relates the relative motion of the four MMS 
spacecraft to the science return for the mission. We posed a set of bound constraints to ensure that 
the optimal solutions have the appropriate dimensions for the MMS mission. In the next section 
we present the results for the reference orbit and relative mnt.i.ion desigz. YJe discuss one soiution in 
de%!, a d  then present some general conclusions. 

RESULTS 

For multiple spacecraft missions such as MMS, the science return is intimately dependent upon 
the orbit design. The coupling between the science return and the orbit design is much stronger than 
most single spacecraft missions. The strong coupling is due to the fact that the entire formation 
serves as the science instrument. The relative spacing of the spacecraft in formation, and the 
placement of the reference orbit in inertial space, 'are therefore a part of designing the science 
instrument itself. In this section we present some design solutions that maximize the performance of 
the MMS formation according to metrics discussed in the previous section. We first present results for 
the reference orbit design. The relationships between the independent variables for the reference orbit 
design and the performance and constraints are discussed. Where possible we identify some general 
conclusions that can be made. Next we present the results of the relative motion optimization. We 
present the results of one optimal case in detail. Following we present some general results and 
discuss where along the reference orbit it is possible to provide adequate performance. Finally, we 
present results that illustrate how long different formations will remain in optimal configurations in 
the presence of natural perturbations. 

Reference Orbit Results 

Recall that our goal in designing optimal reference orbits for Phase I and Phase I1 is to maximize 
the time the reference spacecraft, spends in the plasma sheet region of the Earth's magnetosphere. 
This is called the dwell time. However, we must simultaneously satisfy several mission constraints. 
We know that the maximum eclipse duration and the evolution of the periapsis altitude will be 
important drivers for selection of a reference orbit. However, firm numbers for a maximum eclipse 
and minimum periapsis altitude have not been clearly defined yet. As a result, we present data that 
demonstrates how the reference orbit performance, and the constraints are related to the independent 
variables. 
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For the reference orbit design the independent variables are the inclination, a, the argument of 
periapsis, w ,  the right ascension of the ascending node, 0, and the true anomaly at the initial epoch, 
vi. Figure 3 contains plots of the dwell time of the reference spacecraft in the plasma sheet for 
possible Phase I orbits. The z-axis and y-axis are w and i respectively. The solid contour lines are 
lines of constant dwell time with units in days. The dotted contour lines illustrate lines of constant 
maximum eclipse duration with units in hours. For each plot, R is a constant and the value of 0 
for the individual plots is shown. The true anomaly at the initial epoch, vi, is constant for all plots 
and is equal to zero. For Phase I, the drift in the periapsis altitude due to the lunar perturbation 
was minimal varying between -160 km and -230 km for all solutions. For this reason, contours of 
the periapsis drift are not included to keep the plots as simple as possible. 

From the plots in Figure 3 is it possible to draw conclusions about the relationship between i, w, 
and R and their influence on the dwell time and maximum eclipse duration for Phase I. Inclinations 
below 14" all exhibit dwell times of 46 days or greater. The argument of periapsis plays an important 
role. For values of w near 80" it is possible to achieve dwell times of near 50 days, at inclinations 
around 21O. It is desirable to find orbits that have long dwell t i e s  at inclinations near 28.5" in order 
to maximize the mass-to-orbit launching from Kennedy Space Center. However, for inclinations near 
28.5" the maximum eclipse durations axe on the order of 3.5 hours which is prohibitively high. At 
an inclination of 10" it is possible to provide a dwell time of 61.5 days. However, it is not clear if 
such a low inclination is achievable while simultaneously providing an acceptable mass to orbit. 

It is important to note that the plots shown in Figure 3 assume that the true anomaly at initial 
epoch, vi. is zero. This asslmptic~ p!qs =1? i q i x t a t  i& b r  the Phase I resuits. Recall that the 
plasma sheet dynamics have a short periodic term with a period of one day. Since the period of the 
current nominal Phase I orbit is also one day, it is possible to dramatically change the dwell time 
choosing a different true anomaly at initial epoch. The coupling between the initial position within 
the reference orbit and the initial epoch, Ti, can result in extremely short dwell t imes if the values are 
not chosen carefully. However, if Ti and u, are chosen carefully, then it is possible to  provide longer 
dwell times at higher inclinations, than is possible for reference orbits that do not have a period 
equal to an integer number of days. This is illustrated by comparing the results seen in Figure 3 
with the results for shown in Figure 4. The results in Figure 4 were created by raising the periapsis 
of the Phase I reference orbit to 2.5 Re. For this orbit the period is approximately 1.15 days. As 
seen in Figure 4, at high inclinations the dwell times are much lower, for the same values of i, R, 
and w ,  than solutions in Figure 3. This is in part due to the fact that the period of the orbit is not 
an integer multiple of days. The dwell times are also lower because the reference spacecraft moves 
faster while in the plasma sheet region for the reference orbit with rp = 2.5 Re. Hence the trade 
between choosing a reference orbit with a period of near 1 day is that we can provide longer dwell 
times, but we have the operational concern of acquiring and maintaining a specific true anomaly at 
the appropriate epoch. 

Examining the contour lines of constant maximum eclipse in Figure 3, we see that the inclination 
has the strongest influence on the eclipse duration for Phase I. The maximum eclipse time is only 
weakly influenced by w and R with exceptions for inclinations less than 16". The largest maximum 
eclipse durations occur near inclinations of 23.5". This occurs because an inclination of 23.5" places 
the orbit apogee near the ecliptic plane. Hence the spacecraft is moving relatively slowly when 
it passes through the Earth's shadow. For orbits near the ecliptic plane we see maximum eclipse 
durations of around 3.9 hours for Phase I. In general, to ensure the maximum eclipse duration does 
not exceed 2 hours during Phase I, we must use inclinations of 15" or less. 

In Figure 5 we see contour plots of the dwell time and maximum eclipse duration for possible 
Phase I1 reference orbits. For the plots vi was assumed to be zero. However, since the orbit period 
for Phase I1 is not an integer number of days, the plots do not change significantly for different values 
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e) Contours of Dwell Time and Eclipse Duration, R = 8 

Figure 3: Contours of Dwell Time and Maximum Eclipse Duration for Phase I 
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Figure 4: Contours of Dwell Time and Maximum Eclipse Duration for Phase I, rp = 2.5R, 

of vi. It is important to note that for these plots, the initial radius of periapsis was raised from the 
nominal value of 1.2 Re to 2.5 Re. This was done because all of the reference orbits for Phase 11 
with rp = 1.2 Re either impacted the Earth, or dipped prohibitively low into the atmosphere. The 
dramatic lowering oi the radius of periapsis is primarily due to the lunar perturbation. A 1.2Re 
radius of periapsis for Phase II is not achievable without periodic periapsis mising maneuvers. It is 
likely that a higher periapsis will be required for Phase 11 because with an radius of apogee of 30 
Re , the lunar perturbation lowers periapsis dramatically. 

By inspecting the plots in Figure 5 we see that the orbit inclination has the largest influence 
on the dwell time and maximum eclipse duration. This was also seen for Phase I reference orbits. 
For Phase I1 reference orbits we can provide dwell times on the order of 80 days using inclinations 
around 16". The maximum eclipse duration for inclinations of 16" varies between 2 and 3 hours 
depending on 0 and w. The maximum eclipse duration for these orbits is about 4.5 hours and occurs 
near inclinations of 23.5". 

Before moving on to discuss the results of the relative motion optimization, it is possible to draw 
some general conclusions about the reference orbit design. We see that the longest realistic dwell 
times for Phase I are around 50 days. Dwell times as large as 60 days can be achieved but the orbit 
inclination must be 10" which is probably prohibitively low. The longest dwell times for phase 11 are 
around 85 days and occur at inclinations around 16". The maximum eclipse duration is intimately 
dependent on the orbit inclination. Phase I orbits with inclinations higher than 20" experience 
maximum eclipses of at least 3 hours. Phase 11 orbits with inclinations higher than 20" experience 
maximum eclipses in excess of 4 hours. Finally, if a reference orbit is chosen with a period that is an 
integer number of days, great care must be taken in choosing the epoch of formation establishment. 
Due to the fact that the plasma sheet has a short period oscillation of one day, reference orbits that 
have a period that is an integer number of days can yield short dwell times if the initial epoch and 
the initial true anomaly are not chosen as a coupled pair. 

Relative Motion Results 

For multiple spacecraft missions such as MMS, designing the relative motion of the spacecraft 
in formation is in many ways analogous to designing the placement of science instruments on a 
conventional monolithic single spacecraft platform. Designing the dynamic evolution of the formation 
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is a part of designing the science instrument itself. Here we present some general results for the 
optimal formation design for MMS and therefore yield insight into the potential performance of 
MMS as a science instrument. We begin by discussing a single optimal solution for a given region of 
interest defined by vi = 160" and uf = 200" in h. (12). The maximum achievable performance for 
this solution is presented to illustrate some characteristics of the optimal solutions found in this work. 
Next we present some general results for the achievable performance over a range of vi and vc values. 
We identify the portions of the orbit that can provide useful tetrahedron configurations. Finally, we 
present results that show how long different formations will remain in optimal configurations in the 
presence of perturbations. 

In Figure 6 we see plots that describe the characteristics of the optimal solution for vi = 160 
and uf = 200 for a Phase I, 10 km tetrahedron. See Table 4 in Appendix 1 for the orbit state 
information for this solution. The vertical lines in the plots bound the region of interest for the 
particular solution. The top plot shows the instantaneous performance of the tetrahedron. Recall 
that the maximum possible performance value at any given instant is three. The two curves in the 
top plot show the evolution of QC and QGM over one orbit. For a 10 km Phase I tetrahedron Qc 
penalizes a solution when the average side length is less than 4 km, and greater than 18 km. Qc is 
shown by a solid line. The Glassmeier performance metric, QGM, is shown by a dotted line. Note 
both curves were generated using the same orbital states. The only difference in the two curves is 
the performance metric. The dotted curve gives information about the shape of the formation only. 
The solid curve gives information about both the size and the shape. The middle plot in Figure 6 
shows the lengths of all six sides of the tetrahedron over one complete orbit. The bottom plot shows 
the average side length over one complete orhit.. 

0 50 100 150 200 250 300 350 
True Anomah. dee 

0' I I I I I I  

0 50 100 150 200 250 300 350 
True Anomaly, deg 

150 200 250 300 350 100 0 50 True Anomaly, deg 

Figure 6: Point Solution One 
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Examining the top plot in Figure 6 ,  we see that during the region of interest the performance 
is excellent. The average performance over the region of interest is 2.94. The performance between 
vi = 160 and uf = 200 comes at the expense of poor performance outside of the region of interest. 
From this plot we learn that it is possible to provide excellent performance at orbit apogee for at 
least +/- 20". Notice in the second plot in Figure 6 that the side lengths are all near 10 km during 
the region of interest. Outside the region of interest the side lengths vary between 10 and 60 km. 
These variations in the side lengths are acceptable according to current design requirements for 
maximum and minimum inter-spacecraft separations. 

While the solution discussed above demonstrates that we can provide excellent performance over 
significant portions of the orbit, it is not in general possible to provide near ideal performance for 
the entire orbit. In fact there are regions of the orbit where it is more difficult to maintain regular 
tetrahedrons. Also, in different portions of the orbit it is possible to maintain regular tetrahedrons 
for longer periods of time compared to other orbit regions. We need to draw some general conclusions 
about where in the orbit the best performance can be provided, and for how long. 

To aid in generalizing the results of the optimal solutions, we employ a simple change of variables 
described below 

v, = (Uf + uJ/2 (14) 

AU = uf - (15) 
A graphical description of the relationships between u, and Au and ui and uf is shown in Figure 7. 
We have systematically chosen sets of u, and Au and found nptima! se!1&ions io the peTfcr,m,m,lce 
metric shown in Eq. (12) for each pair. We have picked 324 combinations of u, and Au defined as 
follows: vc is varied from 90" to 270" in increments of 10". For each value of v, we vary Au from 
10" to 180" in increments of 10"; for each v, and Au pair an optimal solution has been found for 
Phase I 10 km, Phase I 1000 km, and Phase I1 10 km tetrahedrons. 

A contour plot of the optimal average performance vs uc and Au for 10 km Phase I tetrahedrons 
is shown in Figure 8. The average performance is defined as the average of the instantaneous 
performance metric, of the optimized tetrahedron, over the region defined by u, and Au. The plot 
on the left has Au as the independent variable along the y-axis. The plot on the right has the change 
in time,. At, that corresponds to the value of Au as the independent variable along the y-axis. The 
two figures allow us to draw some conclusions about the orbit arc length, and the time duration 
that we can provide acceptable tetrahedron formations. Upon inspection of Figure 8 we see that for 
regions of Au < 40" we can provide average performance levels of 2.95 or better. &call that the 
ideal performance according to Eq. (12) is 3.0. We can provide near ideal performance for Av 5 40" 
within 90" < u, < 270". 

We see from Figure 8 that the ability to maintain near ideal performance for long trajectory 
arcs degrades as u, moves towards apogee. As an example, for uc = 180" and Au = 100" we can 
provide an average performance of about 2.75. However, for u, = 90" and Au = 100" we can 
provide an average performance of about 2.9. An even more pronounced example occurs at uc = 90 
and Au = 140". In this case we can provide an average performance of 2.8 for a large portion of 
the orbit. Another general trend in the performance is that it tends to degrade as Au increases. 
For Au = 180" we can only provide average performance levels of around 2.65. Due to the fact 
that the spacecraft velocity is smaller at apogee, it is possible to provide excellent performance for 
large periods of time for regions near apogee. We assume that average performance values below 
2.7 are unacceptable. For average performance levels above 2.7 we assume the formation geometry 
provides adequate science return. Figure 8 shows that it is possible to achieve acceptable levels 
of performance for durations near 20 hours for regions centered at apogee. For Phase I, 10 km 
tetrahedrons, acceptable performaace can be maintained for at least 11 hours per orbit, and often 
much longer, for near-apogee regions. 
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Figure 8: Performance Contours for Phase I, 10 km Tetrahedron 

Figure 9 contains plots that illustrate the possible performance for Phase I, 1000 km tetrahedrons. 
The general relationship between v, and Au for the Phase I, 1000 km performance is similar to 
the performance curves for the Phase I, 10 km tetrahedrons. The ability to maintain near ideal 
performance for long trajectory arcs degrades as v, moves towards apogee. The performance tends 
to degrade as Au increases. For regions of interest centered around apogee, it is still possible to 
provide an average performance of 2.7 for values of Au that are less than 100" and for durations of 
up to 20 hours per orbit. For off-apogee regions 1000 km tetrahedrons that maintain an acceptable 
average performance can be provided for values of Au up to 160" and 9 hours per orbit. 

Results for the Phase 11, 10 km tetrahedron optimization are shown in Figure 10. By comparing 
the results in Figs. 8-10 we see that changing the dimensions of the reference orbit did not change 
the general relationship between u,, Au, and the tetrahedron performance. Because the orbit period 
for Phase I1 is 3.6 days, we cas provide acceptable tetrahedrons during that phase for durations 
up to 80 hours per orbit. There are some difficulties in designing 1000 km tetrahedrons for the 
nominal Phase I1 reference orbit. Due to the relatively low altitude of periapsis of 1275 km and 
the large altitude of apoapsis of 185,000 Icm, it is difficult to provide 1000 km tetrahedrons for the 
current nominal Phase II reference orbit without violating the bound constraints imposed on the 
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Figure 9: Performance Contours for Phase I, 1000 km Tetrahedron 

periapsis altitude shown in Table 3. Due to this reason, and the fact that the current nominal 
Phase I1 reference orbit will require frequent periapsis raising maneuvers, data for Phase I1 1000 km 
tetrahedrons is not included. 

Contours of Constant Performance vs v, and Av Contours of Constant Performance vs. vc and A t 

J 
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Figure 10: Performance Contours for Phase 11, 10 km Tetrahedron 

The results above discuss the tetrahedron performance possible under ideal conditions. We 
neglected to include influences from orbit perturbations and errors in the initial conditions due 
to navigation uncertainties. We also neglected the close approach constraint outside of the region 
defined by Av. However, it is important to determine the stability of the optimal solutions presented 
above in the presence of perturbations and navigation errors. While a rigorous stability analysis 
is beyond the scope of this work, we have investigated the evolution of the tetrahedron solutions 
under the perturbations of the Sun, Moon, and 4x4 non-spherical gravity field. Determining the 
effects of navigation errors on the orbit performance is a topic of current research. We have taken 
each solution used to generate the plots in Figures 8-10 and propagated the formations for 50 days 
under the presence of the perturbations described above. In general, the average performance over 
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the region defined by u, and Au decreases with each orbit revolution due to the perturbations. It 
is assumed that for a particular solution, when the average performance over the region defined Y, 
and Av drops below 2.7, a maneuver is required to reconfigure the formation. 

In Figures 11-13 are plots that contain contours of the time in days for each optimal formation 
configuration to reach mean(&,) = 2.7. For both Phase I and 11, solutions for Av > 110' the 
formations are highly unstable and only remain in a useful configuration for one day and in some 
cases less. By comparing the 10 km tetrahedron results shown in Figure (11) and (13) we see that 
for values of u, around 180° and d u e s  of Au around 40" the formations are quite stable and provide 
acceptable performance for between 30 and 40 days before requiring a maintenance maneuver. Both 
the 10 krn and the 1000 km tetrahedrons are more stable at off-apogee regions for Phase I. 
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Figure 11: Evolution of Phase I, 10 km Tetrahedron Solutions 
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Figure 12: Evolution of Phase I, 1000 km Tetrahedron Solutions 

In this section we presented optimal formation solutions for Phase I and I1 of the MMS mission. 
The relationship between the reference orbit design and the plasma sheet dwell time and maximum 
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Figure 13: Evolution of Phase 11, 10 km Tetrahedron Solutions 

eclipse duration was discussed. In general the performance of the tetrahedron, and its stability, varies 
depending on where in the reference orbit we wish to provide optimal formation configurations. 

For multiple spacecraft missions the coupling between the science return and the orbit design 
is much stronger than most single spacecraft missions. The stronger coupling is due to the fact 
that the entire formation serves as the science instrument. The relative geometry of the spacecraft 
in formation, and the placement of the reference orbit in inertial space, is a part of designing the 
science instrument itself. The orbit design for MMS plays a large influence on the science return and 
the resulting scientific advancements made in our understanding of magnetic reconnection, charged 
particle acceleration, and turbulence in the Earth's magnetosphere. 

In this work, we presented optimal orbit designs for Phase I and I1 of the MMS mission. This 
entails designing the reference orbits so that the spacecraft dwell-time in the plasma sheet region of 
the Earth's magnetosphere is a maximum. This is non-trivial because the Earth's magnetosphere 
is dynamic and its shape and position are not constant in inertial space. Optimal orbit design for 
MMS also entails designing the formation so that the relative motion of the four spacecraft is optimal 
according to a metric directly related to the science performance. We developed a performance metric 
that is related to the science return, and use Sequential Quadratic Programming (SQP) to determine 
optimal relative motion solutions for different regions of interest along the reference orbit. 

We found that the longest realistic dwell time for the nominal Phase I orbit is around 50 ,days. 
This is dependent on the current dimensions of the nominal orbit which axe determined by the science 
goals. Different maximum dwell times will result for different reference orbit dimensions. Dwell times 
as large as 60 days can be achieved for the nominal Phase I orbit but the orbit inclination must be 
10" which is most likely prohibitively low. The longest dwell times for phase I1 are around 85 days 
and occur at inclinations around 16". The maximum eclipse duration is intimately dependent on 
the orbit inclination. Phase I orbits with inclinations higher than 20" experience maximum eclipses 
of at least 3 hours. Phase I1 orbits with inclinations higher than 20" experience maximum eclipses 
in excess of 4 hours. The current nominal Phase I1 reference orbit will require maneuvers to ensure 
that the orbit does not reenter or dip prohibitively low into the Earth's atmosphere. Finally, if a 
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reference orbit is chosen with a period that is an integer number of days, great care must be taken 
in choosing the epoch of formation establishment. Due to the fact that the plasma sheet has a short 
period oscillation‘of one day, reference orbits that have a period that is an integer number of days 
can yield short dwell times if the initial epoch and the initial true anomaly are not chosen as a 
coupled pair. 

The relative motion of the MMS formation must provide an appropriate tetrahedron shape, as 
well as size. We used a metric previously presented in Refs. [2] and [3] to design optimal relative 
motion solutions for different regions in the reference orbit. In general, for Phase I, it is possible to 
achieve acceptable levels of performance for durations near 20 hours per orbit for regions centered at 
apogee. For Phase I, 10 km tetrahedrons, acceptable performance can be maintained for at least 11 
hours per orbit, and often much longer, for off-apogee regions. For Phase I1 we can provide acceptable 
tetrahedrons for durations up to 80 hours per orbit. A preliminary analysis was performed to 
determine how the optimal tetrahedrons evolve under the influence of orbit perturbations. Neglecting 
navigation uncertainties, and some possible close approaches, some solutions remain in acceptable 
configurations for up to  40 days. 
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APPENDIX 

Table 4: States Associated with Figure 6 
State Variable Orbit One Orbit Two Orbit Three Orbit Four 

a (W 42256.691 42256.691 42256.691 42256.691 
e 0.80229 0.80221 0.80214 0.80220 

i (deg.) 10.0481 10.0493 10.0486 10.0426 
w (deg.1 90.2462 90.2623 90.2540 90.2591 
0 (deg.) -0.06204 -0.06873 -0.07096 -0.07084 
IJ (deg.) 180.1627 180.1585 180.1634 180.1608 
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